Перевод названия: Optimization of the structure of the unified multichannel interface temperature control module for measuring instruments of spacecraft
Тип публикации: статья из журнала
Год издания: 2019
Идентификатор DOI: 10.26732/2618-7957-2019-3-171-183
Ключевые слова: космический аппарат, контроль температуры, точность и стабильность измерения, измерительный прибор, термопреобразователь сопротивления, автокомпенсация, автокалибровка, spacecraft, temperature control, measurement accuracy and stability, measuring instrument, thermal resistance converter, automatic compensation, automatic calibration
Аннотация: При разработке унифицированного многоканального интерфейсного модуля контроля температур для измерительных приборов, строящимся по магистрально-модульному принципу на базе центрального приборного модуля и используемых на космических аппаратах различного назначения, первостепенной задачей является оптимизазация его структуры, позволПоказать полностьюяющей обеспечить контроль температуры на элементах конструкции космических аппаратов в различных диапазонах измерения и с различными требованиями по точности и стабильности измерения. Статья посвящена анализу общих требований к структуре многоканального интерфейсного модуля контроля температур, в котором измерительные каналы могут иметь различные технические характеристики, и выбору вариантов схем измерения сопротивлений термопреобразователей, обеспечивающих устранение систематической составляющей погрешности измерения. Показано, что в структуре унифицированного многоканального интерфейсного модуля контроля температур должна быть многоканальная схема измерения, образующая несколько измерительных каналов с различными техническими характеристиками, работающими на общий канал аналого-цифрового преобразования. Для согласования измерительных каналов, имеющих различные входные сопротивления и работающих в различных диапазонах измерения, с общим каналом аналого-цифрового преобразования необходимо использовать управляемый нормирующий усилитель. Для исключения систематической составляющей погрешности измерения необходимо использовать трех- или четырехпроводные варианты схем измерения термопреобразователей сопротивления, позволяющие производить автокомпенсацию погрешности измерения, вносимую сопротивлениями проводов линий связи измерительных кабелей, и автокалибровку погрешности измерения, вносимую измерительными каналами. Для компенсации нелинейной составляющей погрешности измерения, вносимой термопреобразователями сопротивления, необходимо на основе кусочно-линейной аппроксимации их номинальных статических характеристик разбить рабочие диапазоны измерения на поддиапазоны и осуществлять автокалиброву погрешности измерения в каждом поддиапазоне отдельно. In the development of a unified multi-channel interface temperature control module for measuring instruments, built on a main-modular principle on the basis of the central instrument module and used on spacecraft for various purposes, the primary task is to determine its structure, which allows to provide temperature control on the elements of the spacecraft design in different measurement ranges and with different requirements for accuracy and stability of measurement. The article is devoted to the analysis of general requirements to the structure of the multi-channel interface temperature control module, in which the measuring channels can have different technical characteristics, and the choice of variants for measuring the resistance of thermal converters to ensure the elimination of the systematic component of the measurement error. It is shown that in the structure of a unified multichannel interface temperature control module there should be a multichannel measurement scheme forming several measurement channels with different technical characteristics operating on a common channel of analog-to-digital conversion. To match the measuring channels with different input resistances and operating in different measurement ranges with the common channel of the analog-to-digital converter, it is necessary to use a controlled normalizing amplifier. To eliminate the systematic component of the measurement error, it is necessary to use three- or four-wire variants of the measurement schemes of thermal resistance converters, which allow the automatic compensation of the measurement error introduced by the resistances of the wires of the communication lines of the measuring cables, and the automatic calibration of the measurement error introduced by the measuring channels. To compensate for the nonlinear component of the measurement error introduced by thermal resistance converters, it is necessary on the basis of piecewise linear approximation of their nominal static characteristics to divide the operating ranges of measurement into subranges and to carry out automatic calibration measurement errors in each subrange separately.
Журнал: Космические аппараты и технологии
Выпуск журнала: Т. 3, № 3
Номера страниц: 171-183
ISSN журнала: 26187957
Место издания: Железногорск
Издатель: Ассоциация Технологическая платформа Национальная информационная спутниковая система