Adaptive algorithm of classi cation on the missing data : доклад, тезисы доклада

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Applied Methods of Statistical Analysis. Statistical Computation and Simulation - AMSA'2019; Novosibirsk; Novosibirsk

Год издания: 2019

Ключевые слова: supervised learning, missing data, adaptive algorithm, nonparametric estimation of probability density, smoothing window, kernel function, numeric and nominal features

Аннотация: The problem of classi cation by data with gaps, bypassing the stage of their lling, is considered. An adaptive restructuring of algorithms is proposed as a result of the introduction of corresponding indicators into them. The indicators take into account the ow of current information, on the basis of which a decision is made to chПоказать полностьюange the algorithm and the data processing technology itself at each cycle. Computational procedures are based on non-parametric estimation, are given their settings and the results of numerical modeling.

Ссылки на полный текст

Издание

Журнал: Applied Methods of Statistical Analysis. Statistical Computation and Simulation - AMSA'2019

Номера страниц: 292-298

Место издания: Novosibirsk

Издатель: Новосибирский государственный технический университет

Персоны

  • Medvedev Alexander V. (Siberian Federal university)
  • Melekh Daniil A. (Siberian Federal university)
  • Sergeeva Natalia A. (LLC Rd-science)
  • Chubarova Olesya V. (Siberian Federal university)

Вхождение в базы данных