Recurrence relations for the sections of the generating series of the solution to the multidimensional difference equation : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2021

Идентификатор DOI: 10.35634/vm210305

Ключевые слова: difference equation, generating function, section, lattice path

Аннотация: In this paper, we study the sections of the generating series for solutions to a linear multidimensional difference equation with constant coefficients and find recurrent relations for these sections. As a consequence, a multidimensional analogue of Moivre's theorem on the rationality of sections of the generating series depending Показать полностьюon the form of the initial data of the Cauchy problem for a multidimensional difference equation is proved. For problems on the number of paths on an integer lattice, it is shown that the sections of their generating series represent the well-known sequences of polynomials (Fibonacci, Pell, etc.) with a suitable choice of steps. In this paper, we study the sections of the generating series for solutions to a linear multidimensional difference equation with constant coefficients and find recurrent relations for these sections. As a consequence, a multidimensional analogue of Moivre's theorem on the rationality of sections of the generating series depending on the form of the initial data of the Cauchy problem for a multidimensional difference equation is proved. For problems on the number of paths on an integer lattice, it is shown that the sections of their generating series represent the well-known sequences of polynomials (Fibonacci, Pell, etc.) with a suitable choice of steps. © 2021 Udmurt State University. All rights reserved.

Ссылки на полный текст

Издание

Журнал: VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI

Выпуск журнала: Vol. 31, Is. 3

Номера страниц: 414-423

ISSN журнала: 19949197

Место издания: IZHEVSK

Издатель: UDMURT STATE UNIV

Персоны

  • Lyapin A.P. (Siberian Fed Univ, Dept Computat & Informat Technol, Pr Svobodnyi 79, Krasnoyarsk 660041, Russia)
  • Akhtamova S.S. (Lesosibirsk Pedag Inst, Branch Siberian Federal University, Dept Math & Comp Sci, Ul Pobedy 42, Lesosibirsk 662544, Krasnoyarskii K, Russia)

Вхождение в базы данных