Перевод названия: РАЗРАБОТКА И ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ АЛГОРИТМА ДИФФЕРЕНЦИАЛЬНОЙ ЭВОЛЮЦИИ ДЛЯ РЕШЕНИЯ ЗАДАЧ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ
Тип публикации: статья из журнала
Год издания: 2019
Идентификатор DOI: 10.31772/2587-6066-2019-20-2-134-143
Ключевые слова: оптимизация, дифференциальная эволюция, теория Парето доминирования, MOEA/D, NSGA, мутация, optimization, differential evolution, Pareto theory, mutation
Аннотация: In practice problems, which consist in the search of the best (optimal) solution according to the different irredundant and contradictory (conflicting) criteria, called multi-objective problems, are of frequent occurrence. One of the most commonly used methods for solving this kind of problems consists in combination of all criteriПоказать полностьюa into the single one by using some linear relation. However, despite the simplicity of this method, solving problems with its help may cause other problems related to the determination of the mentioned linear combination, namely related to the determination of the weight coefficients for each criterion. The incorrect selection of these coefficients may lead to non-optimal solutions (according to the Pareto theory). In this regard, recently various population-based algorithms have been proposed for solving the described problems, which are the modifications of these population-based algorithms for solving single- objective optimization problems. This article describes the developed modifications of the Differential Evolution algorithm (DE) for solving multi-objective unconstrained optimization problems based on the well-known NSGA (Nondominated Sorting Genetic Algorithm) and MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition) schemes, which use the Pareto theory. The investigation into the efficiency of the Differential Evolution algorithm for solving multi-objective optimization problems in relation to the chosen mutation operator of the original DE algorithm and to the multi-objective scheme was conducted. The developed modifications were tested by using some well-known multi-objective real-valued optimization problems with 30 variables, such as ZDT1, ZDT2, ZDT3, etc. The practical problem of spacecraft control contour variant choice was solved as well. The experimental results show that better results were achieved by the Differential Evolution algorithm with the simplest mutation operators combined with the NSGA scheme. Thus, the applicability of the described modification for solving practical multi-objective optimization problems was demonstrated. В практической деятельности часто встречаются задачи, заключающиеся в поиске лучшего (оптимального) решения при наличии различных несводимых друг к другу и противоречивых (конфликтующих) критериев оптимальности, называемые задачами многокритериальной оптимизации. Один из наиболее распространенных методов решения подобного рода задач заключается в объединении всех критериев в один, используя некоторое линейное соотношение. Несмотря на простоту метода, при решении задач таким способом могут возникнуть проблемы с определением самого линейного соотношения, а именно весовых коэффициентов каждого критерия, неправильный подбор которых может привести к неоптимальным (в смысле теории Парето доминирования) решениям. В связи с этим в настоящее время предложены различные популяционные алгоритмы для решения описанных задач, которые в свою очередь являются модификациями этих же популяционных алгоритмов для решения задач однокритериальной оптимизации. В данной статье описаны разработанные модификации алгоритма дифференциальной эволюции (Differential Evolution, DE) для решения задач многокритериальной безусловной оптимизации на базе широко известных схем NSGA (Non-dominated Sorting Genetic Algorithm) и MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition), использующих теорию Парето доминирования. Исследование эффективности алгоритма дифференциальной эволюции для решения задач многокритериальной оптимизации проводилось в зависимости от выбора оператора мутации исходного алгоритма дифференциальной эволюции и схемы учета множества целевых функций. Разработанные модификации были протестированы с помощью известных задач многокритериальной безусловной оптимизации вещественнозначных функций с 30 независимыми переменными, например, ZDT1, ZDT2, ZDT3 и т. д., также была решена практическая задача выбора эффективного варианта аппаратно-программного комплекса для систем управления космическими аппаратами. В результате экспериментов было установлено, что алгоритм дифференциальной эволюции демонстрирует лучшие результаты при использовании наиболее простых операторов мутации в сочетании со схемой учета целевых функций NSGA, таким образом, показана целесообразность его применения с данными параметрами для решения практических задач.
Журнал: Сибирский журнал науки и технологий
Выпуск журнала: Т. 20, № 2
Номера страниц: 134-143
ISSN журнала: 25876066
Место издания: Красноярск
Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева