Individual tree crown delineation for the species classification and assessment of vital status of forest stands from UAV images

Описание

Тип публикации: статья из журнала

Год издания: 2021

Идентификатор DOI: 10.3390/drones5030077

Ключевые слова: aerial photo and multispectral images, individual tree crowns delineation, pattern recognition, remote sensing, species classification, unmanned aerial vehicle, vital status assessment

Аннотация: Monitoring the structure parameters and damage to trees plays an important role in forest management. Remote-sensing data collected by an unmanned aerial vehicle (UAV) provides valuable resources to improve the efficiency of decision making. In this work, we propose an approach to enhance algorithms for species classification and aПоказать полностьюssessment of the vital status of forest stands by using automated individual tree crowns delineation (ITCD). The approach can be potentially used for inventory and identifying the health status of trees in regional-scale forest areas. The proposed ITCD algorithm goes through three stages: preprocessing (contrast enhancement), crown segmentation based on wavelet transformation and morphological operations, and boundaries detection. The performance of the ITCD algorithm was demonstrated for different test plots containing homogeneous and complex structured forest stands. For typical scenes, the crown contouring accuracy is about 95%. The pixel-by-pixel classification is based on the ensemble supervised classification method error correcting output codes with the Gaussian kernel support vector machine chosen as a binary learner. We demonstrated that pixel-by-pixel species classification of multi-spectral images can be performed with a total error of about 1%, which is significantly less than by processing RGB images. The advantage of the proposed approach lies in the combined processing of multispectral and RGB photo images. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Ссылки на полный текст

Издание

Журнал: Drones

Выпуск журнала: Vol. 5, Is. 3

Номера страниц: 77

ISSN журнала: 2504446X

Издатель: MDPI AG

Персоны

  • Safonova Anastasiia (Siberian Fed Univ, Deep Learning Lab, Krasnoyarsk 660074, Russia; Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada 18071, Spain)
  • Hamad Yousif (Siberian Fed Univ, Deep Learning Lab, Krasnoyarsk 660074, Russia; Imam Jaafar Al Sadiq Univ, Coll Informat Technol, Kirkuk 661001, Iraq)
  • Dmitriev Egor (Russian Acad Sci, Marchuk Inst Numer Math, Moscow 119333, Russia; State Sci Inst, Inst Sci Res Aerosp Monitoring Aerocosmos, Moscow 105064, Russia)
  • Georgiev Georgi (Bulgarian Acad Sci, Forest Res Inst, Dept Forest Entomol Phytopathol & Game Fauna, Sofia 1756, Bulgaria)
  • Trenkin Vladislav (Geografika Ltd, Sofia 1504, Bulgaria)
  • Georgieva Margarita (Bulgarian Acad Sci, Forest Res Inst, Dept Forest Entomol Phytopathol & Game Fauna, Sofia 1756, Bulgaria)
  • Dimitrov Stelian (Sofia Univ St Kliment Ohridski, Dept Cartog & GIS, Fac Geol & Geog, Sofia 1504, Bulgaria)
  • Iliev Martin (Sofia Univ St Kliment Ohridski, Dept Cartog & GIS, Fac Geol & Geog, Sofia 1504, Bulgaria)

Вхождение в базы данных