АВТОМОРФИЗМЫ НИЛЬТРЕУГОЛЬНЫХ ПОДКОЛЕЦ АЛГЕБР ШЕВАЛЛЕ ОРТОГОНАЛЬНЫХ ТИПОВ

Описание

Перевод названия: AUTOMORPHISMS OF NIL-TRIANGULAR SUBRINGS IN CHEVALLEY ALGEBRA OF ORTHOGONAL TYPE

Тип публикации: статья из журнала

Год издания: 2016

Ключевые слова: алгебра Шевалле, нильтреугольная подалгебра, автоморфизм кольца Ли, высота гиперцентрального автоморфизма, Chevalley algebra, nil-triangular subalgebra, automorphism of Lie ring, height of hypercentral automorphism

Аннотация: Алгебра Шевалле над ассоциативно коммутативным кольцом K с единицей характеризуется базисом Шевалле, который сопоставляют каждой неразложимой системе корней Ф. Все элементы er (r Ф+ ) базиса Шевалле дают базис подалгебры NФ(K), называемой нильтреугольной. Автоморфизмы алгебры NФ(K) описали Y. Сao, D. Jiang и D. Wang (J. Algebra, 20Показать полностью07) при K = 2K для лиевых типов Bn, Cn или F4 и при близких ограничениях для других типов. Их описание использует только нестандартный автоморфизм Гиббса; в нашей терминологии это гиперцентральный автоморфизм высоты 2 или 3 (для типа Cn). Наша главная цель состоит в описании группы автоморфизмов А кольца Ли NФ(K). Алгебра NФ(K) лиева типа An-1 представляется алгеброй Ли, ассоциированной с алгеброй NT(n, K) всех нильтреугольных матриц над K. Группы автоморфизмов кольца NT(n, K) и ассоциированного с ним кольца Ли (т. е. A типа An) описал ранее В. М. Левчук (1983). Группу автоморфизмов A для типа Cn недавно описал А. В. Литаврин. В настоящей работе мы находим нестандартные автоморфизмы алгебр NФ(K) ортогональных типов, когда условие K = 2K нарушается. Оказывается, когда аннулятор элемента 2 в K ненулевой, наибольшая высота гиперцентральных автоморфизмов зависит от лиева ранга. Кроме того, мы находим автоморфизмы алгебры NФ(K) типа Dn, которые нестандартны по модулю второго члена нижнего центрального ряда и порождают подгруппу в A, изоморфную определенной подгруппе S в SL(2, K), в частности, S = SL(2, K) при 2K = 0. Стандартные автоморфизмы вместе с построенными нестандартными автоморфизмами порождают всякий автоморфизм алгебры NФ(K). Для всех классических типов лиева ранга 4 наши результаты показывают, что группа автоморфизмов A является произведением подгрупп центральных и индуцированных кольцевых автоморфизмов и группы автоморфизмов алгебры NФ(K). Используются разработанные ранее методы, в частности, специальное представление алгебр NФ(K) классических типов. Результаты могут быть использованы при разработке криптографических методов. Any Chevalley algebra over an associative commutative ring K with the identity is characterized by Chevalley base that correspondents to each indecomposable root system Ф. All elements er (r Ф+ ) of Chevalley base give a base of subalgebra NФ(K) which is said to be nil-triangular. Automorphisms of algebras NФ(K) were described by Y. Cao, D. Jiang and D. Wang (J. Algebra, 2007) at K = 2K for Lie type Bn, Cn or F4 and under similar restrictions for other types. Their description uses only non-standard Gibbs’s automorphisms; in our terminology it is a hypercentral automorphisms of height 2 or 3 (for type Cn). Our main purpose is to describe the automorphism group A of the Lie ring NФ(K). The algebra NФ(K) of Lie type An-1 can be represented as Lie algebra which associated to the algebra NT(n, K) of all nil-triangular matrices over K. The automorphism group of the ring NT(n, K) and of its associated Lie ring (i. e., A for the type An) described earlier V. M. Levchuk (1983). A. V. Litavrin has described the automorphism group A for Lie type Cn recently. In the present paper we find non-standard automorphisms of the algebra NФ(K) for orthogonal types, when the condition K = 2K isn’t satisfied. It seems that if annihilator of element 2 in K is non-zero, then the largest height of hypercentral automorphisms grows together with the Lie rank. Also, we find automorphisms of the algebra NФ(K) of type Dn which are non-standard module second member of lower central series and generate the subgroup of A that isomorphic to certain subgroup S in SL(2, K); in particularly, S = SL(2, K) at 2K = 0. The standard automorphisms together with constructed non-standard automorphisms generate every automorphisms of the algebra NФ(K). For all classical types of rank 4 our results show that the automorphism group A is the product of subgroups of the central and induced ring automorphisms and the automorphism group of the algebra NФ(K). We use developed earlier methods, in particularly, a special representation of the algebras NФ(K) of classical types. The results can be used in development of cryptographic methods.

Ссылки на полный текст

Издание

Журнал: Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева

Выпуск журнала: Т. 17, 2

Номера страниц: 324-327

ISSN журнала: 18169724

Место издания: Красноярск

Издатель: Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Персоны

Вхождение в базы данных