Tunable emergent heterostructures in a prototypical correlated metal : научное издание


Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.1038/s41567-018-0060-9

Аннотация: At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced 1, or entirely new functionalities may emerge 2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textПоказать полностьюures emerge spontaneously due to competing atomic-scale interactions 3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom 4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy - a well-established mechanism for generating spontaneous superstructures 5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting 6 and electronic nematic textures 7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.

Ссылки на полный текст


Журнал: Nature Physics

Выпуск журнала: Т. 14, 5

Номера страниц: 456-460

ISSN журнала: 17452473

Издатель: Nature Publishing Group


  • Fobes D.M. (MPA-CMMS,Los Alamos National Laboratory)
  • Das P. (Division of Materials Sciences and Engineering,Ames Laboratory,U.S. DOE,Iowa State University)
  • Ghimire N.J. (Argonne National Laboratory)
  • Bauer E.D. (MPA-CMMS,Los Alamos National Laboratory)
  • Thompson J.D. (MPA-CMMS,Los Alamos National Laboratory)
  • Ronning F. (MPA-CMMS,Los Alamos National Laboratory)
  • Batista C.D. (Department of Physics and Astronomy,University of Tennessee)
  • Janoschek M. (MPA-CMMS,Los Alamos National Laboratory)
  • Zhang S. (Department of Physics and Astronomy,University of Tennessee)
  • Lin S.Z. (T-4,Los Alamos National Laboratory)
  • Harriger L.W. (NIST Center for Neutron Research,National Institute of Standards and Technology)
  • Ehlers G. (QCMD,Oak Ridge National Laboratory)
  • Podlesnyak A. (QCMD,Oak Ridge National Laboratory)
  • Bewley R.I. (ISIS Facility,STFC Rutherford Appleton Laboratory,Harwell Science and Innovation Campus)
  • Sazonov A. (Institute of Crystallography,RWTH Aachen University,Jülich Centre for Neutron Science (JCNS),Heinz Maier-Leibnitz Zentrum (MLZ))
  • Hutanu V. (Institute of Crystallography,RWTH Aachen University,Jülich Centre for Neutron Science (JCNS),Heinz Maier-Leibnitz Zentrum (MLZ))

Вхождение в базы данных