Microstructural and numerical analysis of fracture mechanisms in a thermal barrier coating system on Ni-based superalloys : материалы временных коллективов

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: European Conference on Fracture (ECF) - Loading and Environmental Effects on Structural Integrity; Belgrade, SERBIA; Belgrade, SERBIA

Год издания: 2018

Идентификатор DOI: 10.1016/j.prostr.2018.12.123

Ключевые слова: Ni-based syperalloy, TBC, interface, residual thermal stress, FEM

Аннотация: The numerical analysis of factors governing the magnitude and distribution of residual thermal stress in an oxide/metal system was carried out regarding industrial applications of Ni-based superalloys protected with the thermal barrier coating system (TBC). The particular emphasis was paid on the microstructural characterization ofПоказать полностьюdamaging behavior of the alpha-Al2O3 thermally grown oxide (TGO) and the integrity along the TGO/NiCoCrAlY-bond coat and TGO/ZrO2-Y2O3 top coat interfaces which are the key to successful application of TBC systems. The cross-sections of samples after the high temperature cyclic oxidation tests at 1100 degrees C in air were characterised by SEM-EDS to study the fracture mechanisms and to model the TBC system. The data on the TGO thickness, its uniformity, chemical and phase compositions, spallation occurrence, and geometry of the interfaces were obtained. The numerical analysis of residual thermal stress was run for five different cooling rates using a finite element model. The following parameters influencing the stress state developed during cooling from the oxidation temperature were considered: physical and mechanical properties of the components, geometry of the interface including roughness and thickness. All the material layers were assumed to creep at elevated temperature. Finally results have been discussed in relation with creep mechanisms for TBCs layer. (C) 2018 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the ECF22 organizers.

Ссылки на полный текст

Издание

Журнал: ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY

Выпуск журнала: Vol. 13

Номера страниц: 741-745

ISSN журнала: 24523216

Место издания: AMSTERDAM

Издатель: ELSEVIER SCIENCE BV

Персоны

  • Fedorova Elena (Siberian Fed Univ, Krasnoyarsk 660041, Russia)
  • Burov Andrey (RAS, SB, Inst Computat Technol, Krasnoyarsk Branch Off, Krasnoyarsk 660049, RussiaProceedings Paper)
  • Sukhodoeva Nadezhda (Siberian Fed Univ, Krasnoyarsk 660041, Russia)
  • Moskvichev Vladimir (RAS, SB, Inst Computat Technol, Krasnoyarsk Branch Off, Krasnoyarsk 660049, RussiaProceedings Paper)