Перевод названия: VIDEO BASED DYNAMIC TEXTURE RECOGNITION UNDER SPECIFIC ILLUMINATION CONDITIONS
Тип публикации: статья из журнала
Год издания: 2017
Ключевые слова: недостаточная освещенность, шум, динамические текстуры, видеопоследовательность, дым, Varying Illumination, noise, Dynamic textures, video sequence, smoke
Аннотация: Обнаружение динамических текстур на видеоизображениях в настоящее время находит все более широкое применение как на городских территориях (в частности, на территориях аэродромов), так и на территориях природных парков, лесных массивов. Качество работы алгоритма поиска динамических текстур зависит от наличия шумов, вносимых сложнымиПоказать полностьюпогодными условиями и недостаточной освещенностью. Для компенсации недостаточной освещенности и повышения качества темных видеоизображений необходимо расширить диапазон яркостей, увеличить среднюю яркость пикселов, повысить контраст и избавиться от аддитивного шума. Для имитации недостаточной освещенности к изображениям с нормальной освещенностью последова- тельно применена гамма-коррекция, добавлен аддитивный гауссов шум и импульсный шум. Компенсация недостаточной освещенности реализована с помощью многомасштабного алгоритма «Ретинекс» с рестав- рацией цвета, подавление аддитивного шума выполнено с использованием фильтра Гаусса, импульсный шум устраняется с применением медианного фильтра. Для повышения резкости использован фильтр Лапласа. Использованы видеопоследовательности из набора данных Билькентского университета, компании Wildfilm- sindia и др. Дополнительно репрезентативность тестового набора повышена самостоятельно снятой авто- рами в ночное время видеопоследовательностью. Экспериментальные исследования проведены на примере системы обнаружения дыма на основе локальных бинарных шаблонов. Точность обнаружения дыма в условиях недостаточной освещенности по сравнению с исходным изображением в среднем ниже на 28-30 %, при этом значительно увеличивается число ошибок первого рода и число ложных срабатываний до 34,2 и 27,4 % соот- ветственно. На изображениях, улучшенных с помощью предложенного алгоритма компенсации недостаточной освещенности, точность обнаружения существенно возрастает и составляет 94,41 %, что ниже точности обнаружения дыма относительно исходного изображения всего на 2,3 %. Таким образом, экспериментальные исследования подтверждают эффективность предложенных методов и алгоритмов анализа динамических текстур на примере обнаружения дыма на видеопоследовательностях. Nowadays dynamic textures recognition is particularly important in different computer vision community tasks in a variety of fields such as urban scenes and forest scenes. The goal of the dynamic textures recognition can be different. Real scenes may include the objects with dynamic behavior because of possible varying illumination, blurring, or weather conditions. Under bad weather conditions the imaging system is degraded to produce low visibility images. Such effects may significantly degrade the performance of outdoor vision systems which relies on image/video. For illumination effects compensation and visual quality enhancement images it is necessary to average pixel intensity increase, expand the range of brightness, image contrast increase and eliminate influence of the additive noise. For the images obtained in adverse lighting conditions imitation in this work Gamma correction, additive Gaussian noise and impulse noise was applied successively. The proposed algorithm employs Multi Scale Retinex with Color Restoration, Laplacian, Gaussian and median filters. For experimental researches of the databases of Bilkent University, Video Smoke Detection, Wildfilmsindia, V-MOTE were used. In addition, the representativeness of the test set is increased by a video sequence, which the authors themselves recorded at night. Experiments on video based smoke detection system based on spatio-temporal local binary pattern were computed. True recognition for smoke in adverse lighting conditions is degraded to 65 %. False rare rejection and false alert errors significantly increase to 34.2 % and 27.2 % respectively. After adverse lighting compensation algorithm work true recognition of smoke regions increases to 94.41 %. This accuracy provides the influence of adverse lighting on a quality of smoke detection is studied. Experimental results show that the proposed method is feasible and effective for video-based dynamic texture analysis in varying illumina- tion conditions
Журнал: Сибирский журнал науки и технологий
Выпуск журнала: Т. 18, № 2
Номера страниц: 283-289
ISSN журнала: 25876066
Место издания: Красноярск
Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева