Тип публикации: статья из журнала
Год издания: 2015
Идентификатор DOI: 10.1134/S0037446615020123
Ключевые слова: algebraic equation; hypergeometric function; discriminant; integral representation; monodromy, algebraic equation, discriminant, hypergeometric function, integral representation, monodromy
Аннотация: We consider a general reduced algebraic equation of degree n with complex coefficients. The solution to this equation, a multifunction, is called a general algebraic function. In the coefficient space we consider the discriminant set a double dagger of the equation and choose in its complement the maximal polydisk domain D containiПоказать полностьюng the origin. We describe the monodromy of the general algebraic function in a neighborhood of D. In particular, we prove that a double dagger intersects the boundary a,D along n real algebraic surfaces of dimension n - 2. Furthermore, every branch y (j) (x) of the general algebraic function ramifies in D only along the pair of surfaces and u((j)) and y((i-1)).
Журнал: SIBERIAN MATHEMATICAL JOURNAL
Выпуск журнала: Vol. 56, Is. 2
Номера страниц: 330-338
ISSN журнала: 00374466
Место издания: NEW YORK
Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER