The monodromy of a general algebraic function

Описание

Тип публикации: статья из журнала

Год издания: 2015

Идентификатор DOI: 10.1134/S0037446615020123

Ключевые слова: algebraic equation; hypergeometric function; discriminant; integral representation; monodromy, algebraic equation, discriminant, hypergeometric function, integral representation, monodromy

Аннотация: We consider a general reduced algebraic equation of degree n with complex coefficients. The solution to this equation, a multifunction, is called a general algebraic function. In the coefficient space we consider the discriminant set a double dagger of the equation and choose in its complement the maximal polydisk domain D containiПоказать полностьюng the origin. We describe the monodromy of the general algebraic function in a neighborhood of D. In particular, we prove that a double dagger intersects the boundary a,D along n real algebraic surfaces of dimension n - 2. Furthermore, every branch y (j) (x) of the general algebraic function ramifies in D only along the pair of surfaces and u((j)) and y((i-1)).

Ссылки на полный текст

Издание

Журнал: SIBERIAN MATHEMATICAL JOURNAL

Выпуск журнала: Vol. 56, Is. 2

Номера страниц: 330-338

ISSN журнала: 00374466

Место издания: NEW YORK

Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER

Персоны

Вхождение в базы данных