Тип публикации: статья из журнала (материалы конференций, опубликованные в журналах)
Год издания: 2010
Идентификатор DOI: 10.1007/978-3-642-14403-5_54
Ключевые слова: cellular automata, pedestrian dynamics, transition probabilities, Macroscopic viewpoint, Microscopic points, Pedestrian flow, Shortest path, Stochastic cellular automata, Artificial intelligence, Computer simulation, Dynamics, Graph theory, Pattern recognition systems, Robots, Translation (languages), Stochastic models
Аннотация: This paper deals with mathematical model of pedestrian flows. We focus here on an "intelligence" of virtual people. From macroscopic viewpoint pedestrian dynamics is already well simulated but from microscopic point of view typical features of people movement need to be implemented to models. At least such features are "keeping in Показать полностьюmind" two strategies - the shortest path and the shortest time and keeping a certain distance from other people and obstacles if it is possible. In this paper we implement mathematical formalization of these features to stochastic cellular automata (CA) Floor Field (FF) model. © 2010 Springer-Verlag Berlin Heidelberg.
Журнал: (13 September 2009 through 16 September 2009, Wroclaw
Выпуск журнала: Vol. 6068 LNCS, Is. PART 2
Номера страниц: 513-520