Тип публикации: статья из журнала
Год издания: 2012
Идентификатор DOI: 10.1134/S0081543812080056
Аннотация: The amoeba of a complex algebraic set is its image under the projection onto the real subspace in the logarithmic scale. We study the homological properties of the complements of amoebas for sets of codimension higher than 1. In particular, we refine A. Henriques' result saying that the complement of the amoeba of a codimension k sПоказать полностьюet is (k - 1)-convex. We also describe the relationship between the critical points of the logarithmic projection and the logarithmic Gauss map of algebraic sets. DOI: 10.1134/S0081543812080056
Журнал: PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS
Выпуск журнала: Vol. 279, Is. 1
Номера страниц: 52-63
ISSN журнала: 00815438
Место издания: NEW YORK
Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER