Тип публикации: статья из журнала
Год издания: 2011
Идентификатор DOI: 10.3103/S1060992X1103009X
Ключевые слова: generalized regression neural networks, global optimization, heuristic methods, neural network approximation of inverse coordinate mappings, neural networks, Coordinate mapping, Neural network approximation, Objective functions, Search spaces, Smooth functions, Experiments, Mapping, Optimization
Аннотация: The novel heuristic method of global optimization via neural network approximation of inverse coordinate mappings is suggested. The method deals with continuous objective functions of multiple variables with multiple extremes. The search space must be a multidimensional box. No derivatives of a function are required to exist. The mПоказать полностьюethod is built on Generalized Regression Neural Networks (GRNNs). An example of application of the method to a smooth function with multiple extremes is provided. The method has been compared with the genetic algorithm and particle swarm optimization through an experiment. The description and results of the experiment are included. © 2011 Allerton Press, Inc.
Журнал: Optical Memory and Neural Networks (Information Optics)
Выпуск журнала: Vol. 20, Is. 3
Номера страниц: 181-193