Тип публикации: статья из журнала
Год издания: 2017
Идентификатор DOI: 10.1007/s11015-017-0394-z
Ключевые слова: aluminum, electrolyzer, bag filter, anode gases, complete combustion, burner unit, gas conduit, deformation, cooling
Аннотация: During aluminum production by self-fi ring anode technology, complete combustion of anode gas components (carbon monoxide, resin substances) is accomplished in electrolyzer burner units. With the aim of reducing combustion product temperature entering the gas conduit network of the electrolyzer body, air is fed into a burner unit iПоказать полностьюn excess (alpha = 6). This amount considerably exceeds that recommended for burning gaseous fuel. As a result of the excessive air intake, excess air the temperature in the combustion zone may be reduced to 300A degrees C. Unburned resin substance is carried with this into the gas exhaust system that is cooled, condensed, and together with dust particles contained in transported anode gases, is deposited on the walls of gas conduits reducing their useful cross section. An improvement in anode gas fuel component complete combustion by optimizing excess air within the limits of alpha = 1.5-1.2 provides a temperature within the combustion zone within the limits of 1270-1330A degrees C. However, in the process the temperature of combustion products entering from a burner into the gas circuit increases to 1000A degrees C and above, and this is connected with the risk of irreversible deformation of steel gas conduits and melting of gas cleaning unit (GCU) bag filters whose permissible operating temperature is in the range 140-160A degrees C. Engineering solutions are proposed in this article aimed at providing safe operation of gas conduit circuits and electrolysis housing GCU with increased efficiency for burning resin substances in electrolyzer burner units.
Журнал: METALLURGIST
Выпуск журнала: Vol. 60, Is. 9-10
Номера страниц: 973-977
ISSN журнала: 00260894
Место издания: NEW YORK
Издатель: SPRINGER