Тип публикации: статья из журнала
Год издания: 1993
Идентификатор DOI: 10.1002/malq.19930390144
Ключевые слова: INTERMEDIATE LOGIC, ADMISSIBLE INFERENCE RULE, HEYTINGS CALCULUS, TABULAR LOGIC, INTUITIONISTIC PROPOSITIONAL LOGIC, MODAL LOGIC, FINITE MODEL PROPERTY, KRIPKE MODEL
Аннотация: The aim of this paper is to look from the point of view of admissibility of inference rules at intermediate logics having the finite model property which extend Heyting's intuitionistic propositional logic H. A semantic description for logics with the finite model property preserving all admissible inference rules for H is given. IПоказать полностьюt is shown that there are continuously many logics of this kind. Three special tabular intermediate logics lambda(i), 1 less-than-or-equal-to i less-than-or-equal-to 3, are given which describe all tabular logics preserving admissibility: a tabular logic A preserves all admissible rules for H iff lambda has width not more than 2 and is not included in each lambda(i).
Журнал: MATHEMATICAL LOGIC QUARTERLY
Выпуск журнала: Vol. 39, Is. 3
Номера страниц: 403-415
ISSN журнала: 09425616
Место издания: HEIDELBERG
Издатель: JOHANN AMBROSIUS BARTH VERLAG