A Riemann-Hilbert Problem for the Moisil-Teodorescu System

Описание

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.3103/S1055134418030057

Ключевые слова: Dirac operator, Fredholm operators, Riemann-Hilbert problem

Аннотация: In a bounded domain with smooth boundary in ℝ3 we consider the stationary Maxwell equations for a function u with values in ℝ3 subject to a nonhomogeneous condition (u, v)x = u0 on the boundary, where v is a given vector field and u0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert bouПоказать полностьюndary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopaniskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem. © 2018, Allerton Press, Inc.

Ссылки на полный текст

Издание

Журнал: Siberian Advances in Mathematics

Выпуск журнала: Vol. 28, Is. 3

Номера страниц: 207-232

ISSN журнала: 10551344

Издатель: Pleiades Publishing

Персоны

  • Polkovnikov A.N. (Siberian Federal University, Institute of Mathematics and Computer Science, Krasnoyarsk, 660041, Russian Federation)
  • Tarkhanov N. (Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany)

Вхождение в базы данных