Moving object recognition system on a pedestrian crossing

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Annual International Conference on Complex Equipment and Quality Control Laboratories, CEQCL 2020

Год издания: 2021

Идентификатор DOI: 10.1088/1742-6596/1728/1/012004

Аннотация: The article discusses the development of a system for recognizing people at a pedestrian crossing. The recognition system includes a trained classifier and two sets of images taken from an opendatabase containing images of city streets from outdoor cameras. Input information prepared using PictureCropper application. The classifierПоказать полностьюwas tested based on the prepared sets of images. The result is shown in the figure, and after testing, the metrics were calculated, necessary to assess the effectiveness of the resulting classifier for each set. System is being developed for specialists, which will allow individual and centralized adjustment of the adjustment of pedestrian phases for each road situation, both for the local system of controllers, and in accordance with the existing algorithms of coordination systems with the expansion of such. © Published under licence by IOPPublishing Ltd.

Ссылки на полный текст

Издание

Журнал: Journal of Physics: Conference Series

Выпуск журнала: Vol. 1728, Is. 1

Номера страниц: 12004

ISSN журнала: 17426588

Издатель: IOP Publishing Ltd

Персоны

  • Semenova E.I. (Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation)
  • Kyarimova S.D. (Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation)
  • Kukartsev V.V. (Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation)
  • Leonteva A.A. (Siberian Federal University, 79 Svobodny pr., Krasnoyarsk, 660041, Russian Federation)
  • Ogol A.R. (Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation)
  • Bondarev A.S. (Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation)

Вхождение в базы данных