Divergent system of equations for a fluid film flowing down a vertical wall : научное издание


Тип публикации: статья из журнала

Год издания: 2011

Идентификатор DOI: 10.1134/S1028335811010022

Аннотация: The modeling system of equations is obtained that describes the two-dimensional long-wave modes of flows of the film for moderate flow rates in which the free boundary problem is solved in a certain sense. The transformation of coordinates is introduced and a variable that enables us to exclude explicitly the velocity of light fromПоказать полностьюthe space metrics is considered. We can restrict ourselves to the zero approximation and define the convective term in energy-momentum tensor. Projecting the viscous-stress tensor to the vector of the normal, the long-wave approximation is obtained. The divergent system of equations describing the evolution of long-wave disturbances of the free surface of the fluid film flowing down a vertical wall is derived. In its derivation, the transformation of coordinates converting the unsteady and beforehand unknown region of flow into a constant-width band is made. The tensor approach based on the system of equations of relativistic hydrodynamics used in this case can be efficiently used in various problems with free surfaces.

Ссылки на полный текст


Журнал: Doklady Physics

Выпуск журнала: Т. 56, 1

Номера страниц: 22-25

ISSN журнала: 10283358

Место издания: Москва

Издатель: Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)


  • Alekseenko S.V. (Institute of Thermophysics,Siberian Branch,Russian Academy of Sciences)
  • Tsvelodub O.Y. (Institute of Thermophysics,Siberian Branch,Russian Academy of Sciences)
  • Arkhipov D.G. (Nuclear Safety Institute,Russian Academy of Sciences,Novosibirsk Division)

Вхождение в базы данных