An identification problem of nonlinear lowest term coefficient in the special form for two-dimensional semilinear parabolic equation

Описание

Тип публикации: статья из журнала

Год издания: 2016

Идентификатор DOI: 10.17516/1997-1397-2016-9-2-180-191

Ключевые слова: Cauchy problem, Inverse problem, Local solvability, Lowest term coefficient, Overdetermination conditions on a smooth curve, Semilinear parabolic equation, Weak approximation method

Аннотация: In this paper we investigate an identification problem of a coefficient at the nonlinear lowest term in a 2D semilinear parabolic equation with overdetermination conditions given on a smooth curve. The unknown coefficient has the form of a product of two functions each depending on time and a spatial variable. We prove solvability Показать полностьюof the problem in classes of smooth bounded functions. We present an example of input data satisfying the conditions of the theorem and the corresponding solution. © Siberian Federal University. All rights reserved.

Ссылки на полный текст

Издание

Журнал: Journal of Siberian Federal University - Mathematics and Physics

Выпуск журнала: Vol. 9, Is. 2

Номера страниц: 180-191

Авторы

  • Kriger Ekaterina N. (Siberian Fed Univ, Inst Math & Comp Sci, Svobodny 79, Krasnoyarsk 660041, Russia)
  • Frolenkov Igor V. (Siberian Fed Univ, Inst Math & Comp Sci, Svobodny 79, Krasnoyarsk 660041, Russia)

Вхождение в базы данных