Revisiting the BaBiO3 semiconductor photocatalyst: synthesis, characterization, electronic structure, and photocatalytic activity : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2021

Идентификатор DOI: 10.1007/s43630-021-00086-y

Ключевые слова: Bandgaps, barium bismuthate, Flatband potentials, photocatalytic activity, Visible-light-active photocatalyst

Аннотация: This article revisits the properties of BaBiO3 examined extensively in the last two decades because of its electronic properties as a superconductor and as a semiconductor photocatalyst. Solid-state syntheses of this bismuthate have often involved BaCO3 as the barium source, which may lead to the formation of BaBiO3/BaCO3 heterostructures that could have an impact on the electronic properties and, more importantly, on the photocatalytic activity of this bismuthate. Accordingly, we synthesized BaBiO3 by a solid-state route to avoid the use of a carbonate; it was characterized by XRD, SEM, and EDX, while elemental mapping characterized the composition and the morphology of the crystalline BaBiO3 and its thin films with respect to structure, optoelectronic, and photocatalytic properties. XPS, periodic DFT calculations, and electrochemical impedance spectroscopy ascertained the electronic and electrical properties, while Raman and DRS spectroscopies assessed the relevant optical properties. The photocatalytic activity was determined via the degradation of phenol in aqueous media. Although some results accorded with earlier studies, the newer electronic structural data on this bismuthate, together with the photocatalytic experiments carried out in the presence of selective radical trapping agents, led to elucidating some of the mechanistic details of the photocatalytic processes that previous views of the BaBiO3 band structure failed to address or clarify. Analytical refinement of the XRD data inferred the as-synthesized BaBiO3 adopted the C2/m symmetry rather than the I2/m structure reported earlier, while Tauc plots from DRS spectra yielded a bandgap of 2.05 eV versus the range of 1.1–2.25 eV reported by others; the corresponding flatband potentials were 1.61 eV (EVB) and − 0.44 eV (ECB). The photocatalytic activity of BaBiO3 was somewhat greater than that of the well-known Evonik P25 TiO2 photocatalyst under comparable experimental conditions. Graphic abstract: [Figure not available: see fulltext.]

Ссылки на полный текст

Издание

Журнал: Photochemical & Photobiological Sciences

Выпуск журнала: Т. 20, 9

Номера страниц: 1147-1160

ISSN журнала: 1474905X

Издатель: Royal Society of Chemistry

Персоны

  • Shtarev D.S. (Laboratory of Thin Film Technologies,Far Eastern Federal University)
  • Shtareva A.V. (Laboratory of Thin Film Technologies,Far Eastern Federal University)
  • Kevorkyants R. (Laboratory ‘Photoactive Nanocomposite Materials’,St. Petersburg State University)
  • Molokeev M.S. (Siberian Federal University)
  • Serpone N. (PhotoGreen Laboratory,Dipartimento di Chimica,Università di Pavia)

Вхождение в базы данных