Longwave stability of two-layer fluid flow in the inclined plane

Описание

Тип публикации: статья из журнала

Год издания: 2015

Идентификатор DOI: 10.1134/S0015462815060010

Ключевые слова: stability, interface, spectrum of characteristic perturbations, interface, spectrum of characteristic perturbations, stability, Capillary flow, Convergence of numerical methods, Eigenvalues and eigenfunctions, Fluid dynamics, Interfaces (materials), Machinery, Inclined planes, Long-wave stabilities, Oscillatory regimes, Spectral problem, spectrum of characteristic perturbations, Thermocapillary flow, Two layer fluid, Zeroth approximations, Flow of fluids

Аннотация: The exact invariantOstroumov-Birikh solution of the Oberbeck-Bussinesq equationswhich describes two-layer advective thermocapillary flows in the inclined plane is analyzed. The spectrum of the characteristic perturbations of all classes of the flows is investigated and analytical representations of the eigennumbers and eigenfunctioПоказать полностьюns of the corresponding spectral problem are obtained in the zeroth approximation. Stability of the flows with respect to longwave perturbations and the possibility of existence of oscillatory regimes are proved.

Ссылки на полный текст

Издание

Журнал: FLUID DYNAMICS

Выпуск журнала: Vol. 50, Is. 6

Номера страниц: 723-736

ISSN журнала: 00154628

Место издания: NEW YORK

Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER

Авторы

  • Bekezhanova V.B. (Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk 660036, Russia; Siberian Fed Univ, Inst Math & Basic Informat, Krasnoyarsk 660041, Russia)
  • Rodionova A.V. (Siberian Fed Univ, Inst Math & Basic Informat, Krasnoyarsk 660041, Russia)

Вхождение в базы данных