On Intersection of Primary Subgroups of Odd Order in Finite Almost Simple Groups


Тип публикации: статья из журнала

Год издания: 2017

Идентификатор DOI: 10.1007/s10958-017-3232-8

Аннотация: We consider the question of the determination of subgroups A and B such that A?Bg ? 1 for any g ? G for a finite almost simple group G and its primary subgroups A and B of odd order. We prove that there exist only four possibilities for the ordered pair (A,B). © 2017 Springer Science+Business Media New York

Ссылки на полный текст


Журнал: Journal of Mathematical Sciences (United States)

Выпуск журнала: Vol. 221, Is. 3

Номера страниц: 384-390


  • Zenkov V.I. (First President of Russia B. N. Yeltsin Ural Federal University, Ekaterinburg, Russian Federation, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation)
  • Nuzhin Y.N. (Siberian Federal University, Krasnoyarsk, Russian Federation)

Вхождение в базы данных