Кавитация на рифленом двумерном гидрокрыле при малом угле атаки

Описание

Перевод названия: Cavitation on a grooved two-dimensional hydrofoil at a small angle of attack

Тип публикации: статья из журнала

Год издания: 2018

Ключевые слова: кавитация, частичные каверны, нестационарности, управление потоком, рифленая поверхность, гидрокрыло, высокоскоростная визуализация, piv, cavitation, partial cavities, instabilities, flow control, Grooved surface, hydrofoil, high-speed imaging

Аннотация: Кавитация представляет собой один из основных источников неустойчивостей течения, возникающих при эксплуатации гидравлического оборудования, а также является причиной эрозионного износа его рабочих элементов. В этой связи разработка и развитие различных методов управления кавитационными течениями является актуальной задачей для задПоказать полностьюержки развития кавитации и снижения ее негативного влияния. Одним из таких методов является модификация поверхности гидрокрыла. Цель работы: экспериментальное исследование кавитационного обтекания рифленого гидрокрыла с продольными бороздками полукруглого профиля на поверхности (НЛ2), представляющего собой уменьшенную модель направляющей лопатки высоконапорной гидротурбины, в сравнении с моделью оригинальной направляющей лопатки (НЛ1). Методы. Для анализа пространственной структуры и временной эволюции паровых каверн и оценки их интегральных характеристик была применена высокоскоростная визуализация. Скорость течения над гидрокрыльями и в их следе измерялась с помощью метода PIV, на основе измеренных ансамблей полей мгновенной скорости были получены распределения средних и турбулентных характеристик течения. Результаты. На лопатке с модифицированной поверхностью (НЛ2) кавитация зарождается в виде одиночных изолированных пузырей в канавках, которые при уменьшении числа кавитации переходят в кавитирующие стрики. Пока стрики локализованы в канавках и не взаимодействуют друг с другом, режим обтекания остается стационарным. Однако когда их размер становится больше диаметра желобков, они выходят за пределы этих углублений, взаимодействуют и образуют единую каверну, которая теряет устойчивость и начинает пульсировать. В целом бороздки на поверхности гидрокрыла позволяют в некоторой степени за -держать развитие кавитации и воспрепятствовать переходу к нестационарным режимам обтекания. На нестационарном режиме динамика каверн на оригинальном гидрокрыле (НЛ1) и НЛ2 сильно отличается. Так, на НЛ1 в отличие от НЛ2 каверна никогда не исчезает полностью, каверна на НЛ1 в среднем оказывается длиннее и пульсирует с большей частотой (St=0,09) по сравнению с НЛ2 (St=0,06). Кроме того, поведение каверны в течение одного периода пульсаций оказалось довольно необычным для обеих моделей: сначала она увеличивается до максимального размера, затем несколько уменьшается и снова вырастает до максимума, после чего возвращается в исходное состояние. Причина такой динамики пока остается невыясненной. На переходном режиме обтекания, когда внутри бороздок формируются кавитирующие стрики, интенсивность турбулентных флуктуаций скорости над поверхностью НЛ2 снижается по сравнению с режимом пузырьковой кавитации. Это происходит потому, что изолированные каверны в желобках как бы восстанавливают форму модифицированного гидрокрыла, делая геометрию его поверхности более приближенной к оригинальной (НЛ1). Таким образом, профиль НЛ2 становится более заполненным благодаря локальной кавитации в бороздках. Вместе с тем наличие канавок на поверхности НЛ2 приводит к дополнительной турбулизации течения вблизи поверхности лопатки для всех рассматриваемых режимов течения, что, вероятно, и является причиной задержки развития кавитации на гидрокрыле с бороздками.

Ссылки на полный текст

Издание

Журнал: Известия Томского политехнического университета. Инжиниринг георесурсов

Выпуск журнала: Т.329, 11

Номера страниц: 25-36

ISSN журнала: 25001019

Место издания: Томск

Издатель: Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет"

Авторы

  • Тимошевский Михаил Викторович (Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук)
  • Первунин Константин Сергеевич (Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук)
  • Маркович Дмитрий Маркович (Национальный исследовательский Томский политехнический университет)

Вхождение в базы данных