СООТВЕТСТВИЕ МАЛЬЦЕВА И ИЗОМОРФИЗМЫ НИЛЬТРЕУГОЛЬНЫХ ПОДКОЛЕЦ АЛГЕБР ШЕВАЛЛЕ : научное издание

Описание

Перевод названия: The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras

Тип публикации: статья из журнала

Год издания: 2018

Идентификатор DOI: 10.21538/0134-4889-2018-24-4-135-145

Ключевые слова: алгебра Шевалле, нильтреугольная подалгебра, изоморфизм, теоретико-модельное соответствие Мальцева, Chevalley algebra, nil-triangular subalgebra, isomorphism, model-theoretic Mal'tsev correspondence, niltriangular subalgebra

Аннотация: Модели алгебраических систем языка первого порядка называются элементарно эквивалентными, пишем $\equiv$, если всякое предложение, истинное в одной из них, является истинным и в другой системе. Теоретико-модельные исследования линейных групп и колец развивались, начиная с работ А.И. Мальцева (1960, 1961), в тесной связи с теорией иПоказать полностьюзоморфизмов; как правило, отношение $\equiv$ исследуемых систем переносилось на поля (или встречавшиеся кольца) коэффициентов. Соответствие Мальцева исследовалось для колец нильтреугольных матриц и унитреугольных групп (Б. Роуз, 1978, В. Вейлер, 1980, К. Видэла, 1988, О.В. Белеградек, 1999, В.М. Левчук, Е.В. Минакова, 2009). Для унипотентных подгрупп групп Шевалле над полем $K$ соответствие исследовал в 1990 г. К. Видэла при $char \,  K \ne 2,3$. Ослабление ограничения на поле $K$ в теореме Видэла авторы анонсировали ранее. В алгебре Шевалле, ассоциированной с системой корней $\Phi$ и кольцом $K$, естественно выделяется нильтреугольная подалгебра $N\Phi (K)$. Основные результаты настоящей статьи устанавливают соответствие Мальцева (взаимосвязано с описанием изоморфизмов) для колец Ли $N\Phi(K)$ классических типов над произвольными ассоциативно коммутативными кольцами с единицей. Отмечается следствие для (неассоциативных) обертывающих алгебр к алгебрам $N\Phi(K)$. Models of algebraic systems of a first-order language are called elementarily equivalent (we write $\equiv$) if every sentence that is true in one of the models is also true in the other model. The model-theoretic study of linear groups and rings initiated by A.I. Mal'tsev (1960, 1961) is closely related to isomorphism theory; as a rule, the relation $\equiv$ of systems was transferred to fields (or rings encountered) of the coefficients. The Mal'tsev correspondence was analyzed for rings of niltriangular matrices and unitriangular groups (B. Rose, 1978; V. Weiler, 1980; K. Videla, 1988; O.V. Belegradek, 1999; V.M. Levchuk, E.V. Minakova, 2009). For unipotent subgroups of Chevalley groups over a field $K$, the correspondence was studied in 1990 by Videla for $char  \, K\ne 2,3$. Earlier the authors announced a weakening of the constraint on the field $K$ in the Videla theorem. In the Chevalley algebra associated with a root system $\Phi$ and a ring $K$, the niltriangular subalgebra $N\Phi(K)$ is naturally distinguished. The main results of this paper establish the Mal'tsev correspondence (related with the description of isomorphisms) for the Lie rings $N\Phi(K)$ of classical types over arbitrary associative commutative rings with unity. A corollary is noted for (nonassociative) enveloping algebras to $N\Phi(K)$. Models of algebraic systems of a first-order language are called elementarily equivalent (we write ) if every sentence that is true in one of the models is also true in the other model. The model-theoretic study of linear groups and rings initiated by A. I. Mal'tsev (1960, 1961) is closely related to isomorphism theory; as a rule, the relation of systems was transferred to fields (or rings encountered) of the coefficients. The Mal'tsev correspondence was analyzed for rings of niltriangular matrices and unitriangular groups (B. Rose, 1978; V. Weiler, 1980; K. Videla, 1988; O. V. Belegradek, 1999; V. M. Levchuk, E. V. Minakova, 2009). For unipotent subgroups of Chevalley groups over a field K, the correspondence was studied in 1990 by Videla for char K not equal 2, 3. Earlier the authors announced a weakening of the constraint on the field K in the Videla theorem. In the Chevalley algebra associated with a root system Phi and a ring K, the niltriangular subalgebra N Phi(K) is naturally distinguished. The main results of this paper establish the Mal'tsev correspondence (related with the description of isomorphisms) for the Lie rings N Phi(K) of classical types over arbitrary associative commutative rings with unity. A corollary is noted for (nonassociative) enveloping algebras to N Phi(K). Models of algebraic systems of a first-order language are called elementarily equivalent (we write ) if every sentence that is true in one of the models is also true in the other model. The model-theoretic study of linear groups and rings initiated by A.

Ссылки на полный текст

Издание

Журнал: Труды института математики и механики УрО РАН

Выпуск журнала: Т. 24, 4

Номера страниц: 135-145

ISSN журнала: 01344889

Место издания: Екатеринбург

Издатель: Федеральное государственное бюджетное учреждение науки Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук

Авторы

Вхождение в базы данных