On genetic codes of certain groups with 3-transpositions

Описание

Тип публикации: статья из журнала

Год издания: 2019

Идентификатор DOI: 10.21538/0134-4889-2019-25-4-184-188

Ключевые слова: genetic code, Coxeter group, Coxeter graph, Weyl group, 3-transposition group, symplectic transvection, 3-transposition group, Coxeter graph, Coxeter group, Genetic code, Symplectic transvection, Weyl group

Аннотация: Coxeter groups have numerous applications in mathematics and beyond, and B. Fischer's 3-transposition groups underly the internal geometric analysis in the theory of finite (simple) groups. The intersection of these classes of groups consists of finite Weyl groups W(A(n)) similar or equal to Sn+1, W(D-n), and W(E-n) for n = 6, 7, 8Показать полностью, simple finite-dimensional algebras, and Lie groups. In previous papers by A. I. Sozutov, A. A. Kuznetsov, and the author, systems S of generating transvections (3-transpositions) of groups Sp(2m) (2) and O-2m(+/-)(2) were found such that the graphs Gamma(S) are trees. A set {Gamma(n)}, n >= m, of nested graphs is called an E-series if these graphs are trees, contain the subgraph E-6, and their subgraphs with vertices m, m + 1,..., n are simple chains. In the present paper, we find genetic codes of the groups Sp(2m)(2) and O-2m(+/-)(2), 8

Ссылки на полный текст

Издание

Журнал: TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN

Выпуск журнала: Vol. 25, Is. 4

Номера страниц: 184-188

ISSN журнала: 01344889

Место издания: YEKATERINBURG

Издатель: KRASOVSKII INST MATHEMATICS & MECHANICS URAL BRANCH RUSSIAN ACAD SCIENCES

Авторы

Вхождение в базы данных