Автоморфизмы и теоретико-модельные вопросы для нильпотентных матричных групп и колец

Описание

Тип публикации: статья из журнала

Год издания: 2008

Ключевые слова: элементарная эквивалентность, изоморфизм, автоморфизм, кольцо нильтреугольных матриц, ассоциированные кольца Ли и Йордана, присоединённая группа

Аннотация: Пусть R'={NT}(m, S). Цель статьи — исследовать элементарные эквивалентности {UT}(n,K)? {UT}(m,S) и ?(R)? ?(R') для произвольных ассоциативных колец коэффициентов с единицей. Основная теорема даёт описание этих эквивалентностей для случая n4. Кроме того, исследуются изоморфизмы и элементарная эквивалентность колец Йордана нильтреугоПоказать полностьюльных матриц. Let R'={NT}(m, S). The purpose of the paper is the investigation of elementary equivalences {UT}(n,K)? {UT}(m,S) and ?(R)? ?(R') for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for n4. In addition, we investigate isomorphisms and elementary equivalence of Jordan niltriangular matrix rings.

Ссылки на полный текст

Издание

Журнал: Фундаментальная и прикладная математика

Выпуск журнала: Т. 14, 8

Номера страниц: 159-168

ISSN журнала: 15605159

Место издания: Москва

Издатель: Негосударственное образовательное частное учреждение высшего образования "Национальный открытый университет "ИНТУИТ"

Авторы

  • Левчук В.М. (Сибирский федеральный университет, Красноярск)
  • Минакова Е.В. (Сибирский федеральный университет, Красноярск)

Вхождение в базы данных